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ABSTRACT: Precision agriculture (PA), defined as spatial/temporal management of agricultural 
practices, requires adequate knowledge about crop growth and development phenology, 
requirements, and the parameters affecting them. Despite the importance of temporal 
management of agricultural practices, it has not been dealt with in most of the reviewed 
literature. In this paper, temporal management of agricultural practices in precision agriculture 
is discussed and crop growth simulation models are suggested as robust tools to schedule the 
agricultural practices. Crop Growth Models (CGMs), by scheduling the crop production activities 
can help producers to temporally manage the inputs, while the efficiency of production would be 
enhanced. Some of the well-known crop growth models are introduced as tools for simulating 
the required production inputs during the growth period. Finally, time-specific management 
(TSM) of agricultural practices base on these models is suggested as the next generation of PA. 
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INTRODUCTION 

Scarcity of the Earth's resources, global climate changes, increasing human population 
and elevated demand for food and fiber, along with environmental awareness, and 
economical concerns, propelled agricultural production in the 21st century towards 
precision agriculture (PA) as spatial/temporal management of agricultural practices.   

Dealing with the climatic conditions of crop production may be the most significant 
factor in agricultural systems (Peart and Shoup, 2004). Limitations of the land resource 
and the importance of their protection, growing human population, and rapidly growing 
demand for agricultural productions created problems for global food security that 
persuaded agriculturalists to find innovative remedies (Murthy, 2004). The increasing 
demands for food, on the one hand, and the need for environmental friendly strategies of 
sustainable agriculture, on the other hand, require special attention when addressing 
the issue of crop productivity enhancement and agricultural sustainability (Meena et al., 
2015). Agricultural water availability reduction, as well as growing population demand 
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for higher agricultural productivity in irrigated areas demonstrate the necessity of 
improving the irrigation efficiency, especially in arid and semiarid regions by precision 
irrigation (Hezarjaribi, 2011). 

Conventional agriculture ignores the inherent spatial variability and manages whole 
field uniformly. The procedure has led to overuse of fertilizers in areas with high 
residual nutrients and application of insecticides and herbicides in areas not infected by 
insects and weeds. Crop growth and yield is frequently limited by nitrogen. On the other 
hand, if fertilization is not temporally and spatially adjusted to the current plant 
requirements, the applied nitrogen compounds may pollute the environment. Extra 
nitrate remained from fertilizers, or the nitrate obtained from nitrification may leach 
into the groundwater or may be released by denitrification as di-nitrogen (N2) and 
nitrous oxide (N2O). The N2O is one of the major causes of global warming and 
considered an stratospheric ozone destructor (Schloter et al., 2003). Environmental 
concerns have led to the introduction of agricultural systems which aim to accomplish 
their objective of productivity in harmony with the environment. In this regard, 
traditional agriculture, that applies inputs non-uniformly based on need, can be 
considered as a system that has survived over centuries and achieves its objective of 
productivity in harmony with the environment (Abbona et al., 2007).  

The variability of agricultural systems and their uncertainties on one side, and the 
necessity of maintaining the environment quality and improving food supply 
sustainability on the other, led to the development of PA as a set of technologies to 
optimize production by adapting inputs site-specifically to allow better use of resources 
(Spiertz, 2010). Dobermann et al. (2002) defined site-specific management (SSM) of 
nutrients as a dynamic management of these inputs by considering: (1) regional and 
seasonal variability in the crop potential yield under climatic conditions and nutrient 
demand; (2) field spatial variability; (3) field-specific during the seasonal changes in 
crop demand for nutrient; and (4) location-based cropping systems and management 
practices. Moral et al. (2011) and Plant (2001) described PA as SSM of agricultural crops 
at a spatial scale smaller than the whole field. Variability of the agricultural field can be 
managed generally in two ways: the map-based approach and the sensor-based 
approach (Zhang et al., 2002). 

 

PRECISION FIELD MANAGEMENT  

Site-specific management of soil fertilizers (Dobermann et al., 2002; Kravchenko and 
Hao, 2008; Mahajan et al., 2014; Takahashi and Huang, 2012; Serrano et al., 2015; 
Vatsanidou et al., 2014; Yang et al., 2014), irrigation water (Cid-Garcia et al., 2014; Egea 
et al., 2015; Goumopoulos et al., 2014; Haghverdi et al., 2016), and protective chemicals 
(Berge et al., 2012; Christensen et al., 2009; Franco et al., 2015; Gerhards et al., 2002; 
Gerhards and Oebel, 2006; Maghsoudi et al., 2015; Maghsoudi and Minaei, 2014; 
Mohammadzamani et al., 2009; Shah and Lee, 2015; Tang et al., 2016) have been studied 
for many years. In addition to SSM, precision farming also entails "temporal 
management" of inputs (Tran and Nguyen, 2006; Vijayanathan et al., 2011; Zhang et al., 
2002) which has not received as much attention as spatial management. 
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Precision chemical management 

Chemical application for crop production is the area receiving the most attention and 
investment. Some examples of precision chemical management will be discussed below.  

For site-specific weed control, a weed treatment map was created to locate and 
determine the dosage of herbicide application (Gerhards et al., 2002). The map-based 
sprayer was equipped with a differential global positioning system (DGPS) and its 
solenoid valves were opened automatically as the tractor entered a weed patch 
designated in the weed treatment map. El-Faki et al. (2000) used the difference between 
the reddish color of weed stems and the greenish color of wheat and soybean stems as a 
machine-vision-based weed detection system. Chen et al. (2003) processed the blue 
value of color images to detect weeds in paddy fields. Color-based machine vision was 
also employed by Nieuwenhuizen et al. (2007) to detect volunteer potatoes as sugar 
beet weeds. In another case study, image segmentation involving acquisition of RGB 
(red-green-blue) original images, image binarization, crop line detection, grid cell 
partition, and attribute extraction was used to detect the Avena sterilis as a cereal weed 
(Tellaeche et al., 2011). As a weed monitoring tool for patch spraying, Weedcer has been 
developed to estimate the proportions of young weed leaves and cereal leaves in high 
resolution RGB images (Berge et al., 2012). The method computes a set of significant 
features for each component that are segmented by relative weed cover (= weed 
cover/(weed+crop cover)) and relative mayweed cover (= mayweed cover/(weed+crop 
cover)) measurements on RGB images, based on color and a set of shape parameters. A 
machine-vision-based intelligent weeding system was developed by (Ghazali et al., 
2008) to identify the types of weeds in oil palm plantations. In their research, three 
techniques of image processing: statistical approach (gray level co-occurrence matrix 
(GLCM)) and structural approach (namely, fast Fourier transform (FFT) and scale 
invariant feature transform (SIFT)) were used and compared. Among the three 
techniques, the SIFT was reported to be better compared to FFT and GLCM for the task. 

 

Precision fertilization 

In order to efficiently manage nutrients, crop production and environmental protection, 
the principles of soil fertility need to be understood. Among the 17 essential elements 
for plant growth, 14 of them come from the soil. The essential nutrients are obtained in 
different amounts based on the plant characteristics, mobility of the nutrients within the 
plant, and analyses of harvested crop components (Pagani et al., 2010). Koch et al. 
(2004) developed a map-based site-specific nitrogen management system utilizing the 
management zones determined by a geographic information system (GIS) that 
integrated the bare soil aerial image of conventionally tilled land, along with field 
topography, and previous crop and soil management data layers. Based on the layers, 
the areas of the field with high, medium, and low productivity were distinguished. Then, 
soil sampling was done to determine the nitrogen application rates. Elsewhere, in order 
to detect calcium deficiency in lettuce, several methods were compared (Story et al., 
2010). Among the methods, top projected canopy area (TPCA), energy, entropy, and 
homogeneity were the most promising for timely detection of calcium deficiency in 
lettuce. They could identify the problem one day prior to visual stress detection by 
human vision. 
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Precision irrigation 

Some of the studies on precision irrigation are referred to in this section. In one such 
study, to irrigate site-specifically, irrigation management zones were delineated based 
on soil electrical conductivity (EC) that was measured by sensors. Then, variable 
amounts of irrigation water were delivered using a remote real-time, distributed 
irrigation control and monitoring system (Hezarjaribi, 2011). A feedback site-specific 
irrigation system, with a network of infrared thermometer (IRT) wireless sensors, was 
utilized to develop dynamic recommendation maps to plan adaptive irrigation of cotton 
(O’Shaughnessy et al., 2015). Rojo et al. (2016) used a continuous leaf monitoring 
system based on temperature and microclimatic variables to detect water stress in 
grape and almond crops for precision irrigation. A wireless network was employed to 
interface the leaf monitors with soil sensors, and pressure sensors that measured the 
pressure in pressure chamber. 

 

Importance of precision farming 

Increasing agricultural crop yields, demands soil fertilization with constant impact on 
soil quality (Yi-Ren et al., 2013). In the other words, sufficient nutrient supply during the 
crop growth and development is needed to support soil fertility for crops. 

Nutrient use efficiency can be defined as the crop output per unit of nutrient input, 
while, the International Plant Nutrition Institute proposed a definition as the adoption of 
the best management practices in agriculture, namely, the 4R concept. Here, 4R refers to 
applying the Right source of nutrient at the Right rate, Right time and Right place 
(Meena et al., 2015).  

Changing attitudes toward the agricultural practices, regards the environment as an 
important factor, therefore, wildlife and habitat protection has resulted in several 
changes in agricultural systems' management (Peart and Shoup, 2004). Application of 
organic and chemical nitrogen fertilizers and pesticides in agriculture resulted in 
significant economic benefits, at the cost of negatively impacting the environment and 
human health (Slabe-Erker et al., 2017). Agricultural soils contaminated with 
organochlorine (Sun et al., 2016) and arsenic-based pesticides (Kumar et al. 2016) rose 
health hazards. The increased regulation and supervision regarding the use of fertilizers, 
pesticides and other chemicals in agriculture, has made PA a promising system, while 
this technology is recognized as an environment-friendly farming practice (Lundström 
et al., 2015). 

Permissible levels of phosphorous and nitrogen fertilizers and specific limitations on 
their dates and methods of application have gradually decreased in the environmentally 
friendly agricultural policies (Huttunen and Peltomaa, 2016). Effective matching of crop 
nitrogen requirements and the appropriate fertilizer application increases fertilizer use 
efficiency while reducing environmental risks (Cao et al., 2015). Therefore, appropriate 
methods are required to help farmers schedule their agricultural practices more 
efficiently. In this field of view, CGMs are appropriate alternatives in governing the 
procedure of scheduling. 
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CROP GROWTH SIMULATION MODELS 

In order to analyze any logically described agricultural system, mathematical models are 
often used (Peart and Shoup, 2004). A simple mathematical representation of a crop 
would lead to the development of a CGM which is used to predict crop reaction to the 
environment. Crop growth models which are increasingly utilized to assist agricultural 
research and development, are basically two general types; 1) descriptive or empirical 
models, that simulate the behavior of a system in a simple way, in which, experimental 
data are utilized to find one or more mathematical equations capable of describing the 
behavior of a system, and 2) explanatory models, that involve a quantitative description 
of the system. These process-based models are also called mechanistic models (Miglietta 
and Bindi, 1993; Weiss et al., 2009). The interaction between the crop and weeds, the 
impact of weeds on crop growth and yield, and providing a basis for forecasting the crop 
yield loss and weed biomass can be simulated using CGMs (Bourdôt et al., 1999). In the 
meantime, it has to be kept in mind that field suitability for weed growth and 
development, their characteristics, and dispersal agents  are of variable nature, 
temporally and spatially (Cardina and Doohan, 2000). 
 
Empirical models 

Descriptive models, also known as empirical models (Rauff and Bello, 2015), simulate 
the behavior of a system in a simple way, in which, experimental data are utilized to find 
one or more mathematical equations capable of describing the behavior of the system 
(Miglietta and Bindi, 1993). This approach examines the data, fits an equation or set of 
equations to them, but provides no information about the mechanisms that give rise to 
the response (Rauff and Bello, 2015). The behavior of a system in these models is 
defined in a simple manner (Murthy, 2004). 
 
Mechanistic models 

From a differential equation relating growth rate to size, a mechanistic model is usually 
derived, which is a mathematical relationship representing the mechanism governing 
the crop growth process (Karkach, 2006). The system is analyzed and its processes and 
mechanisms are separately quantified to be used for yield predictions, agricultural 
planning, farm management, climatology and agrometeorology (Miglietta and Bindi, 
1993). These models have to be calibrated for each region to give accurate and reliable 
results, while they are highly data-demanding (Jongschaap, 2007). Uncertainty of crop 
simulation models over large areas would be due to the spatial and temporal variability 
of weather conditions. Weather variables observed at weather stations and those 
provided by numerical weather prediction models are two important sources of weather 
variables which are often applied in crop models (De Wit and Van Diepen, 2008). There 
are many mechanistic models developed to simulate crop growth in order to predict the 
yield and reaction of crops to stress phenomena. Some of the more important models 
and their applications are described below. 
 
Mechanistic models and their applications in field management 

Light interception and     assimilation are used as growth driving processes in the 
world food studies (WOFOST) mechanistic CGM that describes plant growth based on its 
phenological development. Ways of using the model include: (1) a potential mode, 
where no growth limiting factors are taken into account and crop growth is purely 
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driven by temperature and solar radiation; (2) a water-limited mode, where crop 
growth is limited by the availability of water and no other yield-limiting factors 
(nutrients, pests, weeds and management decisions) are taken into account (De Wit and 
Van Diepen, 2008), and (3) a nutrient-limited mode, in which nutrient availability 
depends on the supply of nutrients to the plant roots (Wu et al., 2011). Crop output 
indicators such as total biomass, leaf area index and yield prediction are outputs of the 
WOFOST for most crops (De Wit and Van Diepen, 2008; Ines et al., 2001). The model 
simulates crop growth and development as a function of environmental conditions (soils 
and climate), crop characteristics, and crop management (irrigation and fertilizer 
application) (Pauwels et al., 2007).  

Daily crop growth rate can be simulated in WOFOST by considering climatic conditions 
(solar radiation, temperature, relative humidity, wind speed and rainfall), soil properties 
(soil depth, water holding capacity and infiltration capacity) and crop characteristics 
(length of the growing cycle, photosynthetic characteristics and distribution of dry 
matter) (Bansouleh et al., 2009). In a case study, to derive the WOFOST model for 
predicting winter wheat yield in Hengshui district, China, the following data were 
collected: regional meteorological data (including daily maximum and minimum 
temperatures, rainfall, wind speed and water pressure), soil characteristics (including 
field moisture capacity, wilting point, saturated water of soil), crop data (including 
temperature summation from sowing to emergence, temperature sum from emergence 
to anthesis, temperature sum from anthesis to maturity, sowing date radiation, and leaf 
area index) (Wu et al., 2011). This is while Yuping et al. (2008) considered the 
phenological development stage (emergence, anthesis and maturity), dry matter weight 
of leaf, stem and storage organ, and LAI in a similar research as the parameters for 
adjusting WOFOST for winter wheat in North China. Bansouleh et al. (2009) simulated 
the sensitivity of potential yields and evapotranspiration of winter barley (as winter 
crop) and maize (as a summer crop) grown in Esfahan, Iran, using WOFOST.  Soil–
water–atmosphere–plant (SWAP) model, adapted from WOFOST, determines potential 
photosynthesis and biomass accumulation (Eitzinger et al., 2004). The soil and water 
assessment tool (SWAT), which is a physically-based, basin-scale, continuous-time 
model was developed by USDA-ARS (United States Department of Agriculture - 
Agricultural Research Service) to operate on a daily time step. This model serves as an 
interdisciplinary tool for simulating agricultural catchment management and has been 
used widely for designing water-related measures in agricultural catchments. In order to 
analyze the impacts of land use change or agricultural management practices, recent 
studies have focused on the combination of both remotely-sensed products and SWAT 
(Psomas et al., 2016). 

The Decision Support System for Agrotechnology Transfer (DSSAT) is a collection of 
independent software describing weather, soil, experiment conditions and 
measurements, as well as genotype information for applying the model to different 
situations (Jones et al., 2003). The model considers solar radiation, temperature and 
precipitation as inputs to be used as a tool to improve land use planning and enhance 
profitability (Murthy, 2004). In order to reach their objectives, farmers use DSSAT to 
match the biological requirement of a crop to the land physical characteristics (Jame and 
Cutforth, 1996). By assuming the uniformity of root length density distribution in each 
soil layer, crop root water absorption rate is calculated by DSSAT. Crop-nitrogen 
interaction modeling is the major advantage of DSSAT over SWAP. Nitrogen dynamics of 
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plant and soil is also feasible to be simulated by DSSAT, but it lacks capability in the case 
of other solutes. While, assuming nitrogen as solute, SWAP is capable of simulating its 
movement and degradation. On the other hand, DSSAT requires weather variables 
including solar radiation, minimum and maximum temperature and rainfall, while in 
SWAP, wind and actual vapor pressure are also needed (Ines et al., 2001). 

Rezzoug et al. (2008) used DSSAT to predict the growth and yields of wheat genotypes 
in Algeria. This method has been successfully used worldwide in a broad range of 
conditions and for a variety of purposes including: as an aid to crop management, 
nitrogen management, irrigation management, precision farming, climate change, yield 
forecasting, and sustainability. DSSAT has a huge database of detailed crop models 
which includes the CERES and CROPGRO families and other CGMs (Ines et al., 2001). 
Scheduling of irrigation, determining the influence of water stress on plant growth and 
development, and the potential yield reduction caused by soil water are some of the 
capabilities of DSSAT (Soler et al., 2013). 

CROPGRO predicts dynamic growth and composition of crops based on plant, soil, 
management and weather inputs giving it the capability to simulate soil water and 
nitrogen balances, soil organic matter, residue dynamics and pest/disease damage (Jone 
et al., 2003; Pedreira et al., 2011) as well as maturity date, fruit number, fruit yield at 
harvest, LAI, and soil water content in the rhizosphere (Rinaldi et al., 2007). Originally, 
CROPGRO was developed to simulate the growth of legume crops (Übelhör et al., 2015) 
but has been used for other situations as well. In a case study, suitability of 
environmental conditions to velvet bean physiological requirements was investigated by 
CROPGRO model and the performance of this model for phenology and nitrogen 
accumulation in different locations was evaluated. It was concluded that the model can 
be considered as a reliable tool for simulating velvet bean response to crop management 
and environmental conditions (Hartkamp et al., 2002). Rinaldi et al. (2007) calibrated 
CROPGRO for processing tomato in Southern Italy to evaluate economic aspects of 23 
different interactive irrigation and/or nitrogen management scenarios. In another study, 
the CROPGRO cabbage model, included in DSSAT software, was calibrated and evaluated 
in the Hawaiian climate for white cabbage (Übelhör et al., 2015). 

AquaCrop is a user friendly, simple, accurate, robust model requiring only a small 
number of input parameters (Patel et al., 2013). It simulates the development of green 
crop canopy cover, crop transpiration, above-ground biomass, and final crop yield 
variables as functions of water availability and consumption, field management 
parameters, plant physiology, soil water and salt budgeting concepts (Vanuytrecht et al., 
2014). The model simulates the balance between soil and water and the processes 
related to crop growth as a function of crop, soil, weather, and management as input 
data parameters, on a daily time step. In AquaCrop, (1) expansion of canopy, instead of 
LAI, is simulated in terms of proportional green canopy cover; (2) in comparison with 
other water-driven crop models, a broader range of water stress impact on transpiration 
is considered; (3) it accounts for the dynamic effects of a range of environmental stress 
factors, especially water (Foster et al., 2017). Patel et al. (2013), used AquaCrop to 
simulate the effect of climate change and other parameters on the growth and yield of 
paddy. In another study, based on the dataset of a 6-year experiment, with several 
irrigation treatments including: full irrigation, different levels of deficit irrigation, and no 
irrigation, AquaCrop model was calibrated and validated in Shiraz, Iran (Mirsafi et al., 
2016).  
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AquaCrop can be used to generate an irrigation schedule (Linker et al., 2015). The model 
is also employed for determining the crop response to water stress, develop schedules 
with deficit irrigation, improve irrigation management in the farm, assessing the 
potential rise in crop production and field management, evaluate crop production under 
climate change effect and to develop decision support tools for farm operations 
(Vanuytrecht et al., 2014). AquaCrop was utilized to simulate cabbage yield and 
irrigation water use in south-western Burkina Faso (Wellens et al., 2013). Under 
variable irrigation and nitrogen levels, maize yield was forecasted by this model with 
acceptable accuracy in New Delhi, India (Abedinpour et al., 2012). Based on Seven years 
(2007–2013) of rainfed field experimental data, AquaCrop was calibrated and its ability 
to simulate the cumulative grain yield of rainfed maize for different soil fertility levels 
was evaluated in the northern Guinea Savanna zone of Nigeria (Akumaga et al., 2017).  

There are many other CGMs that have been used in various research works. Light-use-
efficiency-based CGM's ability was tested to simulate biomass accumulation in wheat 
and weeds to understand the effect of weeds on wheat early-season crop growth and 
grain yield loss (Bourdôt et al., 1999). They realized that modeling the weed community 
biomass accumulation based on the amount of radiation is possible. Wheat growth was 
also modeled, successfully. In a case study, ORYZA2000 was used by Soundharajan and 
Sudheer (2009) to simulate the growth, development and water balance of rice crop 
(Oryza sativa). In order to simulate plant fertilizer demand, the USDA Environmental 
Policy Integrated Climate (EPIC) model was used (Cooter et al., 2012). Liang et al. (2016) 
developed an integrated soil-water-heat-carbon-nitrogen simulator (WHCNS) as CGM to 
assess water and nitrogen management in North China. Based on soil-water balance, 
crop phenology, root growth, crop water production function, and irrigation 
management model, a field crop irrigation management decision-making system 
(CropIrri) was developed. This model (1) utilizes the mean meteorological data of 
several years to develop an irrigation schedule before sowing, and utilizes the forecasted 
weather data to manage real-time irrigation; (2) uses crop phenology simulation to 
determine the compatibility of different varieties in different regions, and to simulate 
the period of crop development stages; (3) simulates root growth and elongation, by 
applying root growth model; (4) sets custom irrigation schedules in different stages for 
certain irrigation plans and estimates the crop water productivity function for 
evaluating yield losses; and (5) simplifies input parameters to ensure smooth system 
running  (Zhang and Feng, 2009). 

 
GENERAL DISCUSSION 

The yield variability of rain fed cultivation significantly depends on the total rainfall and 
its temporal distribution during the growing season, while variability would be reduced 
in the fields with assured water supply (Grassini et al., 2014). Crop growth patterns 
usually reflect the spatial and temporal variability of the factors affecting crop yields. 
Therefore, monitoring the pattern helps farmers to manage the field site-specifically 
(Machado et al., 2002). Meanwhile, precision agriculture includes site-specific 
management of crop production based on variable (temporal/spatial) field conditions 
(Tey and Brindal, 2012).  

In order to reduce the input of water, fertilizer and crop protection chemicals for maize, 
vine, kiwi, asparagus and pomegranate in Greece and Bulgaria, a project was set up to 
manage farms site-specifically to protect the environment by spatial and temporal 
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control of the inputs (Alexandridis et al., 2015). The temporal effect of crop stress 
factors, such as drought, nutrient deficiency, pests, and diseases, on crop yield accounts 
more than 50% of crop yield variability across years and sites (Machado et al., 2002). 
Managing these factors may lead to sufficient profit, while it is a major challenge for 
farmers and, thus, simplified approaches should be developed (Machado et al., 2002). 
Availability of nitrogen, as a mobile nutrient, as well as soil-immobile nutrients may be 
influenced by weather and its impact on soil nutrient supply and plant demand. These 
parameters result in temporal variability in nutrient availability throughout the field 
(Mullen et al., 2010). 

As long as the soil water content is between field capacity and critical soil water content 
(within the optimum range), there is no limiting factor to reduce daily growth rate and 
the soil is considered sufficiently wet; but, as soon as the soil water decreases below a 
critical point, evapotranspiration is reduced with a factor from 1 to 0 corresponding to 
the soil water content depletion between the critical point and wilting point (De Wit and 
Van Diepen, 2008).  

Temporal management of agricultural practices has to be taken toward PA aims, which 
has not been sufficiently investigated in previous research works. However, crops 
during their growth and development need sufficient irrigation, fertilization, 
environmental microclimatic control and protections which can be simulated using 
CGMs. Crop growth models can provide decision makers and agricultural producers with 
a road map to plan the timetable of farm operations based on crop temporal 
requirements.  

These models can both simulate crop growth and development as well as estimate the 
plant requirements during its life time. Therefore, a farmer can estimate the final yield 
based on current climatic conditions, inputs, treatments and operation timetable. On the 
other hand, CGMs enable farmer to implement the right practices with the right intensity 
at the right time in the right place to provide the optimized conditions for crop 
production. This helps to achieve high efficiency, while reducing environmental impacts.  

 

CONCLUSIONS 

Crop growth models are mathematical descriptions that simulate plant growth and 
development. CGMs are typically empirical (also called descriptive, statistical, or 
regression) or mechanistic (also known as explanatory, dynamic, or process-based). The 
empirical models are not generalizable, while, the mechanistic models are global and 
simulate the growth and development processes as a function of crop phenology, 
climatic conditions, soil characteristics, irrigation, and field management parameters. 
Furthermore, the mechanistic models include a large variety based on the purpose of 
application, required data, and the crop in question. These models predict crop yield and 
biomass production. At the same time, they are capable of scheduling the application of 
inputs (fertilizers and protective chemicals as well as irrigation water) during crop 
growth and development based on the region where the crop is cultivated. Due to the 
importance of temporal management of agricultural practices and the prediction 
capability of the CGMs, it is suggested to use them as the governing control systems to 
plan farm operations, temporally. 
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Since, precision agriculture entails spatial/temporal management of agricultural 
practices in the right place at the right time to obtain the highest achievable yield, the 
least environmental impact, and better economy of crop production, the linkage 
between PA and CGMs, which have similar goals, promises the potential of achieving 
very beneficial results. 
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