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Abstract: The emergence of new infectious plant diseases is driven by anthropogenic and 

environmental change, including trade, land use, and climate changes. The movement of infected 

plant material through trade in plant products, germplasm, grafts, and live plants has been 

recognized as the most significant contributing factor to the emergence of new plant diseases. 

Alternaria spp. are ubiquitous fungi. They are present in the human and animals' environment, being 

commonly found in environmental dust samples and air conditioning systems, while spore traps 

often show evidence of Alternaria dispersal. Alternaria spp. have even been shown to be associated 

with insects, having been isolated from the backs of cockroaches. Little work has been performed to 

investigate the saprotrophic lifestyle of Alternaria spp., which probably accounts for the majority of 

Alternaria species in nature. Alternaria spp. can persist on low nutrient media, suggesting that they 

can complete their lifecycle in poor nutrient environments. This review aims to present the lifestyle 

of ascomycete fungi such as Alternaria spp. and show their characterization as major feed grains 

pathogens in agricultural feed production. 
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1. Introduction 

 

The appearance of new transmittable plant diseases is determined by anthropogenic and 

conservational change, including changes in trade, land use, and climate [1–4]. The growth of infected 

plant material through trade in plant products, germplasm, grafts, and live plants has been 

recognised as the greatest contributing factor to the emergence of new plant diseases [5–7]. A 

pathogen may be introduced without disease emergence initially until a second factor, such as the 

introduction of disease vectors, more appropriate hosts, or changes in the environment, leads to an 

increase in disease incidence, geographic range, or severity [8]. Fungi are responsible for many 

introduced plant diseases, with more fungal infections introduced to Europe and Africa over the 20th 

Century than bacteria and viruses combined [9]. Understanding the evolutionary history, 

evolutionary potential, and pathogenicity of fungal diseases will help manage and identify emerging 

pathogens [10]. 

http://www.fimek.edu.rs/jatem
mailto:nikola.puvaca@fimek.edu.rs
mailto:nikola.puvaca@fimek.edu.rs


J Agron Technol Eng Manag 2020, 3(6) 500 

 

Alternaria spp. are ubiquitous fungi [11]. They are present in the human and animals' 

environment, being commonly found in environmental dust samples and air conditioning systems, 

while spore traps often show evidence of Alternaria dispersal [12]. Alternaria spp. have even been 

shown to be associated with insects, having been isolated from the backs of cockroaches [13]. Little 

work has been performed to investigate the saprotrophic lifestyle of Alternaria spp., which probably 

accounts for the majority of Alternaria species in nature. Alternaria spp. can persist on low nutrient 

media, suggesting that they can complete their lifecycle in poor nutrient environments [14]. Alternaria 

is best known for its role as plant pathogens. The USDA Fungal Host Index contains over 4,000 plant-

host associations in this genus, ranking it 10th in the total number of host associations of nearly 2000 

fungal genera. The Alternaria alternata species group alone is recorded as causing disease on over 100 

host plants. This includes economically essential crops including cereals, ornamentals, vegetables, 

and fruits, with losses incurred through direct crop damage, postharvest spoilage, or through 

contamination with mycotoxins [15]. 

Alternaria infections usually occur on the leaves and stems of the host plant [16]. Leaf spots are 

recognized by black necrotic lesions surrounded by chlorotic halos. Leaf necrosis may lead to reduced 

marketability for leafy crops such as Brassica. It may also result in the host abscising leaves, reducing 

photosynthetic potential and crop yields indirectly, as is the case in apple and pear [17]. Alternaria 

spp. also causes fruit spot. They are leading to reduced crop marketability, a significant problem in 

citrus fruits. Alternaria spp. also incurs economic losses postharvest [18,19]. In Red Delicious varieties 

of apple in South Africa, annual losses of 6-8% have been attributed to Alternaria dry core rot. Such 

postharvest diseases are often not thought to be attributed to a single Alternaria sp. but may be caused 

by a range of species. Infections of wheat grains by Alternaria spp. occur in the field and in storage, 

where low temperatures favor them. This reflects the saprotrophic/opportunistic necrotrophic 

lifestyle common through Alternaria species [20]. 

Postharvest spoilage may not just be a result of visual blemishes or reduced palatability but may 

also be caused by mycotoxin contamination [7]. Mycotoxins are non-host selective toxins produced 

by fungi, and more than 30 have been isolated from Alternaria. Toxins are produced by Alternaria 

infecting crushed and whole grains as well as fruits and vegetables [21]. These have been shown to 

pose a range of animal and human health risks [22]. Alternaria mycotoxins are frequently detected in 

fresh produce, including fruit products and juices and grains such as wheat and plant oils [23]. The 

species responsible for contamination are often reported to be Alternaria infectoria or A. alternata [24]. 

The Alternaria genus, and particularly the species A. alternata, are also of clinical signs often 

associated with human airway disorders, including allergy, asthma, and chronic rhinosinusitis [25]. 

As a result, Alternaria spp. are considered to have an enormous contribution to the 3 billion US dollars 

spent on relieving allergenic rhinitis each year in the USA. Alternaria spp. are also gaining recognition 

as human invasive pathogens. This usually occurs in immunocompromised patients, occurring as 

lung or sub-cutinal infections. Infection also occurs following surgery requiring antifungal treatments 

or further operations to remove the infection [26]. 

 

2. Alternaria spp. Characterization  

2.1. Description of the Genus 

 

The genus Alternaria was first described in 1817, with Alternaria tenuis as the type isolate. Keissler 

[27] found ambiguities in descriptions of A. tenuis and synonymized both A. tenuis and Torula alternata 

to A. alternata [28]. No sexual stage was evident in the genus, and as such, it was classified in the 

Phylum Fungi Imperfecti with other asexual fungi. Since the genus' conception, over 1000 Alternaria 

species have been described [29]. Many of these species' names are invalid as they have since been 

classified into other genera or because they lack type specimens. The continued revision of the genus 

reflects its diverse nature, possessing considerable variation in spore structure and being identified 

in many different ecological niches [30]. 
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2.2. Morphological Descriptions 

 

Most classification of the Alternaria spp. has been based on morphology [31]. This understanding 

was brought by published 355 essays and papers on Alternaria morphology, which was subsequently 

summarised in an identification guide for the Alternaria genus, re-describing 275 morphological 

species [32]. The Alternaria genus is characterized by large, multicellular, melanized conidia, which 

can possess longitudinal and transverse septae. Spores are typically broadest at the base and taper 

towards the end [28]. The tapering at the end of spores is commonly referred to as a "beak". Spores 

are often produced on conidiophores in chains that may branch or lead to secondary conidiophores 

that produce other spores [15]. It is mainly the individual spore characters and the sporulation 

patterns that are used to differentiate morphological species within the genus. Identification of 

Alternaria taxa has long been considered problematic. Over 1000 species have been described, and 

275 names are in current use [33]. 

Frequent revision of groups in the genus has resulted in the species boundaries being unclear. 

Taxonomic keys based on morphology have been attempted but have not contained appropriate 

characters to identify taxa at a commonly considered species level [33]. Overlapping spore characters 

and natural variation in response to culturing conditions made these keys hard to follow. This was 

particularly true for many small-spored Alternaria spp. (including A. alternata), which display 

considerable morphological diversity, are present ubiquitously in the environment, and exhibit 

adaptation to various lifestyles, from economically essential plant pathogens to human allergens [34]. 

Therefore, broader groups of spore morphologies were developed to categorize these species. This 

"lumping" of morphologically described species did much to simplify the identification of Alternaria 

spp. Whether these morphological groups represent multiple distinct species or represent, a smaller 

number of highly variable species is still unresolved [35]. 

 

2.3. Toxin Characterisations 

 

Concurrent to significant revisions of taxa based on Alternaria morphology, mycotoxins were 

being identified and characterized in Alternaria species [28]. Toxins that were associated with plant 

disease on major grains were of particular interest. Morphologically similar A. alternata species were 

found to produce toxins that conferred "host-specific" pathogenicity on fruits, vegetables, and 

citruses [15]. Later it was shown that these toxins had a broader host range than initially thought, 

leading to them being referred to as host-selective toxins (HSTs). The conflict between Alternaria 

morphological species descriptions and results from introduced molecular techniques has resulted 

in ambiguity over which morphological descriptions constitute species [35]. Multiple morphological 

species descriptions are available for HST producing Alternaria. Still, all these taxa possess identical 

DNA sequences for the internal transcribed spacer region (ITS) and have been considered a single 

species, A. alternata. As a result of differences of opinion in naming the HST-producers, some 

Alternaria pathotypes have both morphological species descriptions and pathotype designations. This 

has led to confusion when calling the agents of disease; for example, Alternaria mali was described as 

the causal agent of infection of apple trees, and the description of this species was based on spore 

morphology [24]. Separate from the morphological characterization of A. mali is its pathotype 

designation. Individuals that can produce apple HSTs are termed A. alternata apple pathotypes and 

were first identified in Japan. In general, current literature describes HST growing individuals as 

pathotypes of their host. Scientific literature and disease regulation often use the two names 

interchangeably, despite the name representing two different species concepts, and there is little 

evidence that morphological species even cause the same disease [36]. 

 

2.4. Approaches Based on Deoxyribonucleic Acid  

  

The development of molecular approaches has advanced our understanding of evolutionary 

relationships in Alternaria genus [37]. Many morphological described species have been confirmed as 

distinct evolutionary lineages, including Alternaria brassicicola, Alternaria infectoria, Alternaria porri, and 
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Alternaria radicina. However, in many cases, multiple morphological species are associated with a single 

phylogenetic lineage. These lineages generally reflect taxa that have previously been morphological 

species groups and have recently been described using the taxonomic level section, and subsequently 

in Woudenberg et al. [38]. The Alternaria section Alternaria relates to what was previously considered 

the "Alternaria alternata species group". This group's taxonomic status is still unresolved, as molecular 

approaches have shown limited resolution between morphological species [38]. Individuals within this 

group are generally considered to represent a single species A. alternata. This group's accurate 

classification is required due to its diversity of roles as an environmental saprophyte, human 

allergen/pathogen, and plant pathogen [39]. 

3. Conclusions 

Host ranges of individual pathotypes within A. alternata are not yet understood; for example, 

pathotypes of A. alternata thought to be specific to lettuce, tomato, and strawberry have each been 

shown to be capable of causing leaf lesions on European pear (Pyrus communis). Furthermore, there 

is evidence that some European Malus and Pyrus cultivars may be less resistant to Alternaria diseases 

than cultivars grown inside the disease's natural host range. The European and Mediterranean Plant 

Protection Organisation (EPPO) lists Alternaria gaisen as a documented pest. It lists A. mali as an A1 

quarantine pest, meaning that it is not present and is recommended for regulation throughout the 

EPPO region. Keeping in mind those mentioned above, it is essential to focus on more sophisticated 

methodologies in identifying Alternaria spp., especially in feed samples such as the most often 

consumed wheat and corn. 
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